Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
BMC Infect Dis ; 23(1): 290, 2023 May 05.
Article in English | MEDLINE | ID: covidwho-2315408

ABSTRACT

OBJECTIVE: The preferred agent of glucocorticoids in the treatment of patients with severe COVID-19 is still controversial. This study aimed to compare the efficacy and safety of methylprednisolone and dexamethasone in the treatment of patients with severe COVID-19. METHODS: By searching the electronic literature database including PubMed, Cochrane Central Register of Controlled Trials, and Web of Science, the clinical studies comparing methylprednisolone and dexamethasone in the treatment of severe COVID-19 were selected according to the inclusion criteria and exclusion criteria. Relevant data were extracted and literature quality was assessed. The primary outcome was short-term mortality. The secondary outcomes were the rates of ICU admission and mechanical ventilation, PaO2/FiO2 ratio, plasma levels of C-reactive protein (CRP), ferritin, and neutrophil/lymphocyte ratio, hospital stay, and the incidence of severe adverse events. Statistical pooling applied the fixed or random effects model and reported as risk ratio (RR) or mean difference (MD) with the corresponding 95% confidence interval (CI). Meta-analysis was performed using Review Manager 5.1.0. RESULTS: Twelve clinical studies were eligible, including three randomized controlled trials (RCTs) and nine non-RCTs. A total of 2506 patients with COVID-19 were analyzed, of which 1242 (49.6%) received methylprednisolone and 1264 (50.4%) received dexamethasone treatment. In general, the heterogeneity across studies was significant, and the equivalent doses of methylprednisolone were higher than that of dexamethasone. Our meta-analysis showed that methylprednisolone treatment in severe COVID-19 patients was related to significantly reduced plasma ferritin and neutrophil/lymphocyte ratio compared with dexamethasone, and that no significant difference in other clinical outcomes between the two groups was found. However, subgroup analyses of RCTs demonstrated that methylprednisolone treatment was associated with reduced short-term mortality, and decreased CRP level compared with dexamethasone. Moreover, subgroup analyses observed that severe COVID-19 patients treated with a moderate dose (2 mg/kg/day) of methylprednisolone were related to a better prognosis than those treated with dexamethasone. CONCLUSIONS: This study showed that compared with dexamethasone, methylprednisolone could reduce the systemic inflammatory response in severe COVID-19, and its effect was equivalent to that of dexamethasone on other clinical outcomes. It should be noted that the equivalent dose of methylprednisolone used was higher. Based on the evidence of subgroup analyses of RCTs, methylprednisolone, preferably at a moderate dose, has an advantage over dexamethasone in the treatment of patients with severe COVID-19.


Subject(s)
COVID-19 , Glucocorticoids , Humans , Glucocorticoids/therapeutic use , Methylprednisolone/therapeutic use , COVID-19 Drug Treatment , Dexamethasone/therapeutic use
2.
Vaccines (Basel) ; 11(1)2023 Jan 16.
Article in English | MEDLINE | ID: covidwho-2200960

ABSTRACT

The spread of SARS-CoV-2 and its variants leads to a heavy burden on healthcare and the global economy, highlighting the need for developing vaccines that induce broad immunity against coronavirus. Here, we explored the immunogenicity of monovalent or bivalent spike (S) trimer subunit vaccines derived from SARS-CoV-2 B.1.351 (S1-2P) or/and B.1. 618 (S2-2P) in Balb/c mice. Both S1-2P and S2-2P elicited anti-spike antibody responses, and alum adjuvant induced higher levels of antibodies than Addavax adjuvant. The dose responses of the vaccines on immunogenicity were evaluated in vivo. A low dose of 5 µg monovalent recombinant protein or 2.5 µg bivalent vaccine triggered high-titer antibodies that showed cross-activity to Beta, Delta, and Gamma RBD in mice. The third immunization dose could boost (1.1 to 40.6 times) high levels of cross-binding antibodies and elicit high titers of neutralizing antibodies (64 to 1024) prototype, Beta, Delta, and Omicron variants. Furthermore, the vaccines were able to provoke a Th1-biased cellular immune response. Significantly, at the same antigen dose, S1-2P immune sera induced stronger broadly neutralizing antibodies against prototype, Beta, Delta, and Omicron variants compared to that induced by S2-2P. At the same time, the low dose of bivalent vaccine containing S2-2P and S1-2P (2.5 µg for each antigen) significantly improved the cross-neutralizing antibody responses. In conclusion, our results showed that monovalent S1-2P subunit vaccine or bivalent vaccine (S1-2P and S2-2P) induced potent humoral and cellular responses against multiple SARS-CoV-2 variants and provided valuable information for the development of recombinant protein-based SARS-CoV-2 vaccines that protect against emerging SARS-CoV-2 variants.

3.
Sustainability ; 15(2):931, 2023.
Article in English | MDPI | ID: covidwho-2166902

ABSTRACT

There are imbalances and uncertainties in the global supply and demand of dairy products, owing to the adverse influence of overall economic changes, dairy prices, agricultural politics, the COVID-19 pandemic, and severe climate. This paper aims to explore the evolving characteristics and influencing factors of the global dairy trade pattern and make recommendations for the sustainable development of the global dairy trade. This paper studies the evolutionary characteristics of the global dairy trade pattern from the perspective of the overall structure, individual characteristics, and core-periphery structure through complex network analysis (CNA), using the countries involved in dairy trade from 2000 to 2020. Furthermore, this study explores the influencing factors of the dairy trade network using a quadratic allocation procedure (QAP). The results indicate that the global dairy trade network has been expanding, with prominent scale-free features and small-world characteristics. Individual countries display obvious heterogeneity, whereas the core import regions of the dairy shift from Europe, East Asia, and America to North America, the Middle East, and East Asia. Contrary to this, there is no significant change in the core export regions. Consequently, the entire dairy trade network represents a clear core-periphery structure. Moreover, the income per capita gaps, geographic distance gaps, and common language always affect the trade value and dairy trade relations across the countries. Meanwhile, economic level gaps and regional trade agreements have become increasingly significant. Thus, the dairy trade may not follow the 'border effect';. Lastly, this paper also extends recommendations for the sustainable development of the dairy trade.

4.
Hum Vaccin Immunother ; : 2118477, 2022 Sep 07.
Article in English | MEDLINE | ID: covidwho-2008475

ABSTRACT

Multiple types of SARS-CoV-2 vaccines have been used worldwide, but summarizing their immunologic efficacy post-vaccination remains challenging. The BCR and TCR sequencing based on single-cell sorting makes it possible to evaluate the vaccine-induced immune responses of B or T cells. In this study, we compared the repertoire diversities of B cells and T cells between a whole-virus inactivated vaccine and an S1 protein subunit vaccine in rhesus macaques. We found that the inactivated vaccine could induce a large antigen-specific-BCR repertoire with longer VH CDR3 (21 aa), while the CD3+ TCR α chains of the two vaccine groups showed a similar TCRV/J usage frequency. Detailed analysis of the TCR and BCR repertoires might be of interest for further understanding of the mechanisms of vaccine-induced immune responses.

6.
MedComm (2020) ; 3(3): e166, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1990511
7.
Research (Wash D C) ; 2022: 9769803, 2022.
Article in English | MEDLINE | ID: covidwho-1970043

ABSTRACT

Identification of epitopes targeted following virus infection or vaccination can guide vaccine design and development of therapeutic interventions targeting functional sites, but can be laborious. Herein, we employed peptide microarrays to map linear peptide epitopes (LPEs) recognized following SARS-CoV-2 infection and vaccination. LPEs detected by nonhuman primate (NHP) and patient IgMs after SARS-CoV-2 infection extensively overlapped, localized to functionally important virus regions, and aligned with reported neutralizing antibody binding sites. Similar LPE overlap occurred after infection and vaccination, with LPE clusters specific to each stimulus, where strong and conserved LPEs mapping to sites known or likely to inhibit spike protein function. Vaccine-specific LPEs tended to map to sites known or likely to be affected by structural changes induced by the proline substitutions in the mRNA vaccine's S protein. Mapping LPEs to regions of known functional importance in this manner may accelerate vaccine evaluation and discovery of targets for site-specific therapeutic interventions.

8.
Trials ; 23(1): 423, 2022 May 21.
Article in English | MEDLINE | ID: covidwho-1951316

ABSTRACT

BACKGROUND: The specific use of methylprednisolone in severe community-acquired pneumonia (SCAP) has not yet formed a consensus. It is not clear whether the clinical efficacy of methylprednisolone in SCAP is dose-dependent, and how to balance the best efficacy with the least complications. The aim of this study is to evaluate the efficacy and safety of different doses of methylprednisolone in the adjuvant treatment for patients with SCAP. METHODS/DESIGN: This is a prospective, randomized, double-blind, parallel group, placebo-controlled trial to evaluate the efficacy and safety of different doses of methylprednisolone in the adjuvant treatment for patients with SCAP. Patients with diagnosed SCAP are randomized to the following four groups at a 1:1:1:1 ratio: group 1 (control group)-standard ICU patient care+100ml of normal saline once a day for 5 days; group 2-standard ICU patient care+40mg of methylprednisolone (dissolved in normal saline with a final volume of 100ml) once a day for 5 days; group 3-standard ICU patient care+80mg of methylprednisolone (dissolved in normal saline with a final volume of 100ml) once a day for 5 days; and group 4-standard ICU patient care+120mg of methylprednisolone (dissolved in normal saline with a final volume of 100ml) once a day for 5 days. The primary outcome is PaO2/FiO2 ratio at day 5 following randomization. The secondary outcomes are 28-day mortality, ventilator-free days at 28 days, mechanical ventilation duration at 28 days, endotracheal intubation rate, time for temperature recovery, duration of vasopressors use, serum CRP and interleukin-6 level at day 5 following randomization, hospital stay, frequency of nosocomial infections, gastrointestinal hemorrhage, and hyperglycemia. DISCUSSION: The results of our study may find the optimal dose of glucocorticoid in the adjuvant treatment of SCAP and provide evidence-based proof for clinicians to treat patients with SCAP. Since coronavirus disease 2019 (COVID-19) also belongs to community-acquired pneumonia, perhaps the results of our study will help to determine the appropriate dose of methylprednisolone in COVID-19 treatment. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2100045056 . Registered on 4 April 2021.


Subject(s)
COVID-19 Drug Treatment , Community-Acquired Infections , Community-Acquired Infections/diagnosis , Community-Acquired Infections/drug therapy , Humans , Methylprednisolone/adverse effects , Prospective Studies , Randomized Controlled Trials as Topic , SARS-CoV-2 , Saline Solution , Treatment Outcome
9.
Theranostics ; 12(6): 2519-2534, 2022.
Article in English | MEDLINE | ID: covidwho-1771697

ABSTRACT

Rationale: Mutations of SARS-CoV-2, which is responsible for coronavirus disease 2019 (COVID-19), could impede drug development and reduce the efficacy of COVID-19 vaccines. Here, we developed a multiplexed Spike-ACE2 Inhibitor Screening (mSAIS) assay that can measure the neutralizing effect of antibodies across numerous variants of the coronavirus's Spike (S) protein simultaneously. Methods: The SARS-CoV-2 spike variant protein microarrays were prepared by printing 72 S variants onto a chemically-modified glass slides. The neutralization potential of purified anti-S antibodies and serum from convalescent COVID-19 patients and vaccinees to S variants were assessed with the mSAIS assay. Results: We identified new S mutations that are sensitive and resistant to neutralization. Serum from both infected and vaccinated groups with a high titer of neutralizing antibodies (NAbs) displayed a broader capacity to neutralize S variants than serum with low titer NAbs. These data were validated using serum from a large vaccinated cohort (n = 104) with a tiled S peptide microarray. In addition, similar results were obtained using a SARS-CoV-2 pseudovirus neutralization assay specific for wild-type S and five prevalent S variants (D614G, B.1.1.7, B.1.351, P.1, B.1.617.2), thus demonstrating that high antibody diversity is associated with high NAb titers. Conclusions: Our results demonstrate the utility of the mSAIS platform in screening NAbs. Moreover, we show that heterogeneous antibody populations provide a more protective effect against S variants, which may help direct COVID-19 vaccine and drug development.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Vaccination
10.
Steroids ; 183: 109022, 2022 07.
Article in English | MEDLINE | ID: covidwho-1757853

ABSTRACT

The roles of methylprednisolone in treatment of patients with COVID-19 remain unclear. The aim of this study was to evaluate the efficacy and safety of methylprednisolone in treatment of COVID-19 patients. PubMed, Cochrane and Web of Science were searched for studies comparing methylprednisolone and no glucocorticoids treatment in patients with COVID-19. Statistical pooling was reported as risk ratio (RR) or mean difference (MD) with corresponding 95 % confidence interval (CI). Thirty-three studies were eligible, including 5 randomized trials and 28 observational studies. Meta-analysis showed that compared with no glucocorticoids, methylprednisolone in treatment of COVID-19 patients was associated with reduced short-term mortality (RR 0.73; 95% CI 0.60-0.89), less need for ICU admission (RR 0.77; 95% CI 0.66-0.91) and mechanical ventilation (RR 0.69; 95% CI 0.57-0.84), increased 28-day ventilator-free days (MD 2.81; 95% CI 2.64-2.97), without increasing risk of secondary infections (RR 1.04; 95% CI 0.82-1.32), but could prolong duration of viral shedding (MD 1.03; 95% CI 0.25-1.82). Subgroup analyses revealed that low-dose (≤2mg/kg/day) methylprednisolone treatment for ≤ 7 days in severe COVID-19 patients was associated with relatively better clinical outcomes, without increasing duration of viral shedding. Compared with no glucocorticoids, methylprednisolone treatment in COVID-19 patients is associated with reduced short-term mortality and better clinical outcomes, without increasing secondary infections, but could slightly prolong duration of viral shedding. Patients with severe COVID-19 are more likely to benefit from short-term low-dose methylprednisolone treatment (1-2 mg/kg/day for ≤ 7 days).


Subject(s)
COVID-19 Drug Treatment , Coinfection , Glucocorticoids/therapeutic use , Humans , Methylprednisolone/therapeutic use , Respiration, Artificial
11.
Infect Dis Poverty ; 11(1): 15, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1666677

ABSTRACT

BACKGROUND: COVID-19 pandemic continues, clarifying signatures in clinical characters and antibody responses between severe and non-severe COVID-19 cases would benefit the prognosis and treatment. METHODS: In this study, 119 serum samples from 37 severe or non-severe COVID-19 patients from the First People's Hospital of Yueyang were collected between January 25 and February 18 2020. The clinical features, antibody responses targeting SARS-CoV-2 spike protein (S) and its different domains, SARS-CoV-2-specific Ig isotypes, IgG subclasses, ACE2 competitive antibodies, binding titers with FcγIIa and FcγIIb receptors, and 14 cytokines were comprehensively investigated. The differences between severe and non-severe groups were analyzed using Mann-Whitney U test or Fisher's exact test. RESULTS: Severe group including 9 patients represented lower lymphocyte count, higher neutrophil count, higher level of LDH, total bile acid (TBA) (P < 1 × 10-4), r-glutaminase (P = 0.011), adenosine deaminase (P < 1 × 10-4), procalcitonin (P = 0.004), C-reactive protein (P < 1 × 10-4) and D-dimer (P = 0.049) compared to non-severe group (28 patients). Significantly, higher-level Igs targeting S, different S domains (RBD, RBM, NTD, and CTD), FcγRIIa and FcγRIIb binding capability were observed in a severe group than that of a non-severe group, of which IgG1 and IgG3 were the main IgG subclasses. RBD-IgG were strongly correlated with S-IgG both in severe and non-severe group. Additionally, CTD-IgG was strongly correlated with S-IgG in a non-severe group. Positive RBD-ACE2 binding inhibition was strongly associated with high titers of antibody (S-IgG1, S-IgG3, NTD-IgG, RBD-IgA, NTD-IgA, and CTD-IgA) especially RBD-IgG and CTD-IgG in the severe group, while in the non-severe group, S-IgG3, RBD-IgG, NTD-IgG, and NTD-IgM were correlated with ACE2 blocking rate. S-IgG1, NTD-IgM and S-IgM were negatively associated with illness day in a severe group, while S-IgG3, RBD-IgA, CTD-IgA in the severe group (r = 0.363, P = 0.011) and S-IgG1, NTD-IgA, CTD-IgA in the non-severe group were positively associated with illness day. Moreover, GRO-α, IL-6, IL-8, IP-10, MCP-1, MCP-3, MIG, and BAFF were also significantly elevated in the severe group. CONCLUSION: Antibody detection provides important clinical information in the COVID-19 process. The different signatures in Ig isotypes, IgG subclasses, antibody specificity between the COVID-19 severe and non-severe group will contribute to future therapeutic and preventive measures development.


Subject(s)
Antibodies, Viral/blood , COVID-19 , COVID-19/diagnosis , COVID-19/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin Isotypes/blood , Pandemics , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
13.
Signal Transduct Target Ther ; 6(1): 304, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361622

ABSTRACT

A comprehensive analysis of the humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential in understanding COVID-19 pathogenesis and developing antibody-based diagnostics and therapy. In this work, we performed a longitudinal analysis of antibody responses to SARS-CoV-2 proteins in 104 serum samples from 49 critical COVID-19 patients using a peptide-based SARS-CoV-2 proteome microarray. Our data show that the binding epitopes of IgM and IgG antibodies differ across SARS-CoV-2 proteins and even within the same protein. Moreover, most IgM and IgG epitopes are located within nonstructural proteins (nsps), which are critical in inactivating the host's innate immune response and enabling SARS-CoV-2 replication, transcription, and polyprotein processing. IgM antibodies are associated with a good prognosis and target nsp3 and nsp5 proteases, whereas IgG antibodies are associated with high mortality and target structural proteins (Nucleocapsid, Spike, ORF3a). The epitopes targeted by antibodies in patients with a high mortality rate were further validated using an independent serum cohort (n = 56) and using global correlation mapping analysis with the clinical variables that are associated with COVID-19 severity. Our data provide fundamental insight into humoral immunity during SARS-CoV-2 infection. SARS-CoV-2 immunogenic epitopes identified in this work could also help direct antibody-based COVID-19 treatment and triage patients.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Humoral , SARS-CoV-2/immunology , Viral Nonstructural Proteins/immunology , COVID-19/mortality , Critical Illness , Disease-Free Survival , Epitopes/immunology , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Protein Array Analysis , Survival Rate
14.
J Adv Res ; 37: 209-219, 2022 03.
Article in English | MEDLINE | ID: covidwho-1330938

ABSTRACT

Introduction: The SARS-CoV-2 pandemic has endangered global health, the world economy, and societal values. Despite intensive measures taken around the world, morbidity and mortality remain high as many countries face new waves of infection and the spread of new variants. Worryingly, more and more variants are now being identified, such as 501Y.V1 (B.1.1.7) in the UK, 501Y.V2 (B.1.351) in South Africa, 501Y.V3 in Manaus, Brazil, and B.1.617/B.1.618 in India, which could lead to a severe epidemic rebound. Moreover, some variants have a stronger immune escape ability. To control the new SARS-CoV-2 variant, we may need to develop and redesign new vaccines repeatedly. So it is important to investigate how our immune system combats and responds to SARS-CoV-2 infection to develop safe and effective medical interventions. Objectives: In this study, we performed a longitudinal and proteome-wide analysis of antibodies in the COVID-19 patients to revealed some immune processes of COVID-19 patients against SARS-CoV-2 and found some dominant epitopes of a potential vaccine. Methods: Microarray assay, Antibody depletion assays, Neutralization assay. Results: We profiled a B-cell linear epitope landscape of SARS-CoV-2 and identified the epitopes specifically recognized by either IgM, IgG, or IgA. We found that epitopes more frequently recognized by IgM are enriched in non-structural proteins. We further identified epitopes with different immune responses in severe and mild patients. Moreover, we identified 12 dominant epitopes eliciting antibodies in most COVID-19 patients and identified five key amino acids of epitopes. Furthermore, we found epitope S-82 and S-15 are perfect immunogenic peptides and should be considered in vaccine design. Conclusion: This data provide useful information and rich resources for improving our understanding of viral infection and developing a novel vaccine/neutralizing antibodies for the treatment of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Epitopes , Humans , Immunity, Humoral , Immunoglobulin M , Proteome
15.
ACS Cent Sci ; 6(12): 2238-2249, 2020 Dec 23.
Article in English | MEDLINE | ID: covidwho-889128

ABSTRACT

Comprehensive profiling of humoral antibody response to severe acute respiratory syndrome (SARS) coronavirus-2 (CoV-2) proteins is essential in understanding the host immunity and in developing diagnostic tests and vaccines. To address this concern, we developed a SARS-CoV-2 proteome peptide microarray to analyze antibody interactions at the amino acid resolution. With the array, we demonstrate the feasibility of employing SARS-CoV-1 antibodies to detect the SARS-CoV-2 nucleocapsid phosphoprotein. The first landscape of B-cell epitopes for SARS-CoV-2 IgM and IgG antibodies in the serum of 10 coronavirus disease of 2019 (COVID-19) patients with early infection is also constructed. With array data and structural analysis, a peptide epitope for neutralizing antibodies within the SARS-CoV-2 spike receptor-binding domain's interaction interface with the angiotensin-converting enzyme 2 receptor was predicted. All the results demonstrate the utility of our microarray as a platform to determine the changes of antibody responses in COVID-19 patients and animal models as well as to identify potential targets for diagnosis and treatment.

16.
Clin Transl Med ; 10(4): e158, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-725849

ABSTRACT

The corona virus disease 2019 (COVID-19) is a highly contagious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More than 18 million people were infected with a total of 0.7 million deaths in ∼188 countries. Controlling the spread of SARS-CoV-2 is therefore inherently dependent on identifying and isolating infected individuals, especially since COVID-19 can result in little to no symptoms. Here, we provide a comprehensive review of the different primary technologies used to test for COVID-19 infection, discuss the advantages and disadvantages of each technology, and highlight the studies that have employed them. We also describe technologies that have the potential to accelerate SARS-CoV-2 detection in the future, including digital PCR, CRISPR, and microarray. Finally, remaining challenges in COVID-19 diagnostic testing are discussed, including (a) the lack of universal standards for diagnostic testing; (b) the identification of appropriate sample collection site(s); (c) the difficulty in performing large population screening; and (d) the limited understanding of SARS-COV-2 viral invasion, replication, and transmission.

17.
Mol Cell Proteomics ; 19(11): 1749-1759, 2020 11.
Article in English | MEDLINE | ID: covidwho-713514

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a highly contagious infection and threating the human lives in the world. The elevation of cytokines in blood is crucial to induce cytokine storm and immunosuppression in the transition of severity in COVID-19 patients. However, the comprehensive changes of serum proteins in COVID-19 patients throughout the SARS-CoV-2 infection is unknown. In this work, we developed a high-density antibody microarray and performed an in-depth proteomics analysis of serum samples collected from early COVID-19 (n = 15) and influenza (n = 13) patients. We identified a large set of differentially expressed proteins (n = 132) that participate in a landscape of inflammation and immune signaling related to the SARS-CoV-2 infection. Furthermore, the significant correlations of neutrophil and lymphocyte with the CCL2 and CXCL10 mediated cytokine signaling pathways was identified. These information are valuable for the understanding of COVID-19 pathogenesis, identification of biomarkers and development of the optimal anti-inflammation therapy.


Subject(s)
Blood Proteins/immunology , Coronavirus Infections/immunology , Cough/immunology , Cytokine Release Syndrome/immunology , Fever/immunology , Headache/immunology , Influenza, Human/immunology , Myalgia/immunology , Pneumonia, Viral/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/pathogenicity , Blood Proteins/genetics , COVID-19 , Child , Coronavirus Infections/genetics , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Cough/genetics , Cough/physiopathology , Cough/virology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/physiopathology , Cytokine Release Syndrome/virology , Cytokines/genetics , Cytokines/immunology , Female , Fever/genetics , Fever/physiopathology , Fever/virology , Gene Expression Profiling , Gene Expression Regulation , Headache/genetics , Headache/physiopathology , Headache/virology , Humans , Influenza, Human/genetics , Influenza, Human/physiopathology , Influenza, Human/virology , Male , Middle Aged , Myalgia/genetics , Myalgia/physiopathology , Myalgia/virology , Orthomyxoviridae/pathogenicity , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Protein Array Analysis , Proteome/genetics , Proteome/immunology , Receptors, Cytokine/genetics , Receptors, Cytokine/immunology , SARS-CoV-2 , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL